Currently displaying 1 – 2 of 2

Showing per page

Order by Relevance | Title | Year of publication

A weakly chainable uniquely arcwise connected continuum without the fixed point property

Mirosław Sobolewski — 2015

Fundamenta Mathematicae

A continuum is a metric compact connected space. A continuum is chainable if it is an inverse limit of arcs. A continuum is weakly chainable if it is a continuous image of a chainable continuum. A space X is uniquely arcwise connected if any two points in X are the endpoints of a unique arc in X. D. P. Bellamy asked whether if X is a weakly chainable uniquely arcwise connected continuum then every mapping f: X → X has a fixed point. We give a counterexample.

Page 1

Download Results (CSV)