The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
We consider the problems of finding two optimal triangulations
of a convex polygon: MaxMin area and MinMax area. These are the
triangulations that maximize the area of the smallest area triangle in a triangulation,
and respectively minimize the area of the largest area triangle
in a triangulation, over all possible triangulations. The problem was originally
solved by Klincsek by dynamic programming in cubic time [2]. Later,
Keil and Vassilev devised an algorithm that runs in O(n^2 log n) time...
Download Results (CSV)