Currently displaying 1 – 2 of 2

Showing per page

Order by Relevance | Title | Year of publication

Generalized weak peripheral multiplicativity in algebras of Lipschitz functions

Let (X, d X) and (Y,d Y) be pointed compact metric spaces with distinguished base points e X and e Y. The Banach algebra of all 𝕂 -valued Lipschitz functions on X - where 𝕂 is either‒or ℝ - that map the base point e X to 0 is denoted by Lip0(X). The peripheral range of a function f ∈ Lip0(X) is the set Ranµ(f) = f(x): |f(x)| = ‖f‖∞ of range values of maximum modulus. We prove that if T 1, T 2: Lip0(X) → Lip0(Y) and S 1, S 2: Lip0(X) → Lip0(X) are surjective mappings such that R a n π ( T 1 ( f ) T 2 ( g ) ) R a n π ( S 1 ( f ) S 2 ( g ) ) for all f, g ∈ Lip0(X),...

Page 1

Download Results (CSV)