Una nota sobre espacios de funciones continuas con valores vectoriales.
Define as the subspace of consisting of all harmonic functions in B, where B is the ball in the n-dimensional Euclidean space and E is any Banach space. Consider also the space consisting of all harmonic E*-valued functions g such that is bounded for some m>0. Then the dual is represented by through , . This extends the results of S. Bell in the scalar case.
This note is to bring attention to one of the ending questions in Grothendieck's thesis [3, Chapter 2, p. 134]: Is the space DLp isomorphic to s ⊗ Lp? The problem has been, as we shall see, essentially solved by Valdivia and Vogt. This fact, however, seems to have remained unnoticed. Supports this belief of the authors the fact that they have been unable to find an explicit reference to its solution.
Page 1