The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
In investigating a certain optimization problem in biogeography, Simon [IEEE Trans. Evolutionary Comput. 12 (2008), 702-713] encountered a certain specially structured tridiagonal matrix and made a conjecture regarding its eigenvalues. A few years later, the validity of the conjecture was established by Igelnik and Simon [Appl. Math. Comput. 218 (2011), 195-201]. In this paper, we give another proof of this conjecture that is much shorter, almost computation-free, and does not resort to the eigenvectors...
Download Results (CSV)