Currently displaying 1 – 2 of 2

Showing per page

Order by Relevance | Title | Year of publication

Wreath product of a semigroup and a Γ-semigroup

Mridul K. SenSumanta Chattopadhyay — 2008

Discussiones Mathematicae - General Algebra and Applications

Let S = {a,b,c,...} and Γ = {α,β,γ,...} be two nonempty sets. S is called a Γ -semigroup if aαb ∈ S, for all α ∈ Γ and a,b ∈ S and (aαb)βc = aα(bβc), for all a,b,c ∈ S and for all α,β ∈ Γ. In this paper we study the semidirect product of a semigroup and a Γ-semigroup. We also introduce the notion of wreath product of a semigroup and a Γ-semigroup and investigate some interesting properties of this product.

Clifford semifields

Mridul K. SenSunil K. MaityKar-Ping Shum — 2004

Discussiones Mathematicae - General Algebra and Applications

It is well known that a semigroup S is a Clifford semigroup if and only if S is a strong semilattice of groups. We have recently extended this important result from semigroups to semirings by showing that a semiring S is a Clifford semiring if and only if S is a strong distributive lattice of skew-rings. In this paper, we introduce the notions of Clifford semidomain and Clifford semifield. Some structure theorems for these semirings are obtained.

Page 1

Download Results (CSV)