The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
We study the C*-algebras of Fell bundles. In particular, we prove the analogue of Renault's disintegration theorem for groupoids. As in the groupoid case, this result is the key step in proving a deep equivalence theorem for the C*-algebras of Fell bundles.
Given an ultragraph in the sense of Tomforde, we construct a topological quiver in the sense of Muhly and Tomforde in such a way that the universal C*-algebras associated to the two objects coincide. We apply results of Muhly and Tomforde for topological quiver algebras and of Katsura for topological graph C*-algebras to study the K-theory and gauge-invariant ideal structure of ultragraph C*-algebras.
Download Results (CSV)