The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 3 of 3

Showing per page

Order by Relevance | Title | Year of publication

Local null controllability of a two-dimensional fluid-structure interaction problem

Muriel BoulakiaAxel Osses — 2008

ESAIM: Control, Optimisation and Calculus of Variations

In this paper, we prove a controllability result for a fluid-structure interaction problem. In dimension two, a rigid structure moves into an incompressible fluid governed by Navier-Stokes equations. The control acts on a fixed subset of the fluid domain. We prove that, for small initial data, this system is null controllable, that is, for a given T > 0 , the system can be driven at rest and the structure to its reference configuration at time T . To show this result, we first consider a linearized system....

Local null controllability of a fluid-solid interaction problem in dimension 3

Muriel BoulakiaSergio Guerrero — 2013

Journal of the European Mathematical Society

We are interested by the three-dimensional coupling between an incompressible fluid and a rigid body. The fluid is modeled by the Navier-Stokes equations, while the solid satisfies the Newton's laws. In the main result of the paper we prove that, with the help of a distributed control, we can drive the fluid and structure velocities to zero and the solid to a reference position provided that the initial velocities are small enough and the initial position of the structure is close to the reference...

Local null controllability of a two-dimensional fluid-structure interaction problem

Muriel BoulakiaAxel Osses — 2010

ESAIM: Control, Optimisation and Calculus of Variations

In this paper, we prove a controllability result for a fluid-structure interaction problem. In dimension two, a rigid structure moves into an incompressible fluid governed by Navier-Stokes equations. The control acts on a fixed subset of the fluid domain. We prove that, for small initial data, this system is null controllable, that is, for a given , the system can be driven at rest and the structure to its reference configuration at time . To show this result, we first consider a linearized system....

Page 1

Download Results (CSV)