The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
We introduce two new notions of amenability for a Banach algebra A. The algebra A is n-weakly amenable (for n ∈ ℕ) if the first continuous cohomology group of A with coefficients in the n th dual space is zero; i.e., . Further, A is permanently weakly amenable if A is n-weakly amenable for each n ∈ ℕ. We begin by examining the relations between m-weak amenability and n-weak amenability for distinct m,n ∈ ℕ. We then examine when Banach algebras in various classes are n-weakly amenable; we study...
Download Results (CSV)