The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
We propose the following problem. For some k ≥ 1, a graph G is to be properly edge coloured such that any two adjacent vertices share at most k colours. We call this the k-intersection edge colouring. The minimum number of colours sufficient to guarantee such a colouring is the k-intersection chromatic index and is denoted χ’ₖ(G). Let fₖ be defined by
.
We show that fₖ(Δ) = Θ(Δ²/k). We also discuss some open problems.
We obtain some improved upper and lower bounds on the oriented chromatic number for different classes of products of graphs.
In this note we extend the Mulder-Nebeský characterization of the interval function of a connected graph to the disconnected case. One axiom needs to be adapted, but also a new axiom is needed in addition.
Download Results (CSV)