The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Let θ : ℳ → 𝓝 be a zero-product preserving linear map between algebras. We show that under some mild conditions θ is a product of a central element and an algebra homomorphism. Our result applies to matrix algebras, standard operator algebras, C*-algebras and W*-algebras.
Download Results (CSV)