The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 2 of 2

Showing per page

Order by Relevance | Title | Year of publication

Constructing universally small subsets of a given packing index in Polish groups

Taras BanakhNadya Lyaskovska — 2011

Colloquium Mathematicae

A subset of a Polish space X is called universally small if it belongs to each ccc σ-ideal with Borel base on X. Under CH in each uncountable Abelian Polish group G we construct a universally small subset A₀ ⊂ G such that |A₀ ∩ gA₀| = for each g ∈ G. For each cardinal number κ ∈ [5,⁺] the set A₀ contains a universally small subset A of G with sharp packing index p a c k ( A κ ) = s u p | | : g A g G i s d i s j o i n t equal to κ.

Page 1

Download Results (CSV)