The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
A subset S of V (G) is an independent dominating set of G if S is independent and each vertex of G is either in S or adjacent to some vertex of S. Let i(G) denote the minimum cardinality of an independent dominating set of G. A graph G is k-i-critical if i(G) = k, but i(G+uv) < k for any pair of non-adjacent vertices u and v of G. In this paper, we establish that if G is a connected 3-i-critical graph and S is a vertex cutset of G with |S| ≥ 3, then [...] improving a result proved by Ao [3],...
Download Results (CSV)