Best Constants for the Inequalities between Equivalent Norms in Orlicz Spaces
We investigate best constants for inequalities between the Orlicz norm and Luxemburg norm in Orlicz spaces.
We investigate best constants for inequalities between the Orlicz norm and Luxemburg norm in Orlicz spaces.
We prove a quantitative dimension-free bound in the Shannon-Stam entropy inequality for the convolution of two log-concave distributions in dimension d in terms of the spectral gap of the density. The method relies on the analysis of the Fisher information production, which is the second derivative of the entropy along the (normalized) heat semigroup. We also discuss consequences of our result in the study of the isotropic constant of log-concave distributions (slicing problem).
Page 1