The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
This paper presents the role of vector relative degree in the
formulation of stationarity conditions of optimal control problems
for affine control systems. After translating the dynamics into a
normal form, we study the Hamiltonian structure. Stationarity
conditions are rewritten with a limited number of variables. The
approach is demonstrated on two and three inputs systems, then, we
prove a formal result in the general case. A mechanical system
example serves as illustration.
In this paper we consider a free boundary problem for a nonlinear parabolic partial differential equation. In particular, we are concerned with the inverse problem, which means we know the behavior of the free boundary a priori and would like a solution, e.g. a convergent series, in order to determine what the trajectories of the system should be for steady-state to steady-state boundary control. In this paper we combine two issues: the free boundary (Stefan) problem with a quadratic nonlinearity....
In this paper we consider a free boundary problem for a nonlinear
parabolic partial differential equation. In particular, we are
concerned with the inverse problem, which means we know the
behavior of the free boundary and would like a solution,
a convergent series, in order to determine what the
trajectories of the system should be for steady-state to
steady-state boundary control. In this paper we combine two
issues: the free boundary (Stefan) problem with a quadratic
nonlinearity. We prove...
Download Results (CSV)