The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 5 of 5

Showing per page

Order by Relevance | Title | Year of publication

On The Cauchy Problem for Non Effectively Hyperbolic Operators, The Ivrii-Petkov-Hörmander Condition and the Gevrey Well Posedness

Nishitani, Tatsuo — 2008

Serdica Mathematical Journal

2000 Mathematics Subject Classification: 35L15, Secondary 35L30. In this paper we prove that for non effectively hyperbolic operators with smooth double characteristics with the Hamilton map exhibiting a Jordan block of size 4 on the double characteristic manifold the Cauchy problem is well posed in the Gevrey 6 class if the strict Ivrii-Petkov-Hörmander condition is satisfied.

Hyperbolicity of two by two systems with two independent variables

Tatsuo Nishitani — 1998

Journées équations aux dérivées partielles

We study the simplest system of partial differential equations: that is, two equations of first order partial differential equation with two independent variables with real analytic coefficients. We describe a necessary and sufficient condition for the Cauchy problem to the system to be C infinity well posed. The condition will be expressed by inclusion relations of the Newton polygons of some scalar functions attached to the system. In particular, we can give a characterization of the strongly...

Page 1

Download Results (CSV)