The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Let ⊞, ⊠, and ⊎ be the free additive, free multiplicative, and boolean additive convolutions, respectively. For a probability measure μ on [0,∞) with finite second moment, we find a scaling limit of as N goes to infinity. The -transform of its limit distribution can be represented by Lambert’s W-function. From this, we deduce that the limiting distribution is freely infinitely divisible, like the lognormal distribution in the classical case. We also show a similar limit theorem by replacing free...
We study relations between the Boolean convolution and the symmetrization and the pushforward of order 2. In particular we prove that if μ₁,μ₂ are probability measures on [0,∞) then and if ν₁,ν₂ are symmetric then . Finally we investigate necessary and sufficient conditions under which the latter equality holds.
Download Results (CSV)