We present analytical solution of the Stokes problem in rotationally symmetric domains. This is then used to find the asymptotic behaviour of the solution in the vicinity of corners, also for Navier-Stokes equations. We apply this to construct very precise numerical finite element solution.
We present analytical solution of the Stokes problem in 2D domains. This is then used to find the asymptotic behavior of the solution in the vicinity of corners, also for Navier-Stokes equations in 2D. We apply this to construct very precise numerical finite element solution.
In computer fluid dynamics, employing stabilization to the finite element method is a commonly accepted way to improve the applicability of this method to high Reynolds numbers. Although the accompanying loss of accuracy is often referred, the question of quantifying this defect is still open. On the other hand, practitioners call for measuring the error and accuracy. In the paper, we present a novel approach for quantifying the difference caused by stabilization.
Rock bolts as construction elements are often used in underground civil engineering projects. This work deals with their numerical modelling. Aydan special finite elements for the description of rock bolts and hexahedral quadratic finite elements for the description of rock massif were used. A code for the computation of stiffness matrices and right hand sides of these elements was developed. The code was tested on several simple test examples and their results were compared with the analytical...
We consider the Navier-Stokes equations for the incompressible flow in channels with forward and backward steps. The paper consists of two main parts. In the first part we investigate a posteriori error estimates for the Stokes and Navier-Stokes equations on two-dimensional polygonal domains. We apply the a posteriori estimates to solve an incompressible flow problem in a domain with corners that cause singularities in the solution. Second part of the paper stands on the result on the asymptotics
of...
We deal with modelling of flows in channels or tubes with abrupt changes of the diameter. The goal of this work is to construct the FEM solution in the vicinity of these corners as precise as desired. We present two ways. The first approach makes use of a posteriori error estimates and the adaptive strategy. The second approach is based on the asymptotic behaviour of the exact solution in the vicinity of the corner and on the a priori error estimate of the FEM solution. Then we obtain the solution...
In this paper, we introduce a general framework for derivation of the averaging operator, from which the standard choices are recovered by simplifications. Then, an alternative approach derived by another simplification is proposed and tested on a 2D example.
Download Results (CSV)