Let C = (C, g^1/4 ) be a tetragonal curve. We consider the scrollar
invariants e1 , e2 , e3 of g^1/4 . We prove that if W^1/4 (C) is a non-singular variety,
then every g^1/4 ∈ W^1/4 (C) has the same scrollar invariants.
2000 Mathematics Subject Classification: Primary 14H55; Secondary 14H30, 14H40, 20M14.
Let H be a 4-semigroup, i.e., a numerical semigroup whose
minimum positive element is four. We denote by 4r(H) + 2 the minimum
element of H which is congruent to 2 modulo 4. If the genus g of H is
larger than 3r(H) − 1, then there is a cyclic covering π : C −→ P^1
of curves with degree 4 and its ramification point P such that the Weierstrass
semigroup H(P) of P is H (Komeda [1]). In this paper it is...
2000 Mathematics Subject Classification: Primary 14H55; Secondary 14H30, 14J26.
A 4-semigroup means a numerical semigroup whose minimum positive integer is 4. In [7] we showed that a 4-semigroup with some conditions is the Weierstrass semigroup of a ramification point on a double covering of a hyperelliptic curve. In this paper we prove that the above statement holds for every 4-semigroup.
Download Results (CSV)