Currently displaying 1 – 3 of 3

Showing per page

Order by Relevance | Title | Year of publication

On the behavior close to the unit circle of the power series whose coefficients are squared Möbius function values

Oleg Petrushov — 2015

Acta Arithmetica

We consider the behavior of the power series 0 ( z ) = n = 1 μ 2 ( n ) z n as z tends to e ( β ) = e 2 π i β along a radius of the unit circle. If β is irrational with irrationality exponent 2 then 0 ( e ( β ) r ) = O ( ( 1 - r ) - 1 / 2 - ε ) . Also we consider the cases of higher irrationality exponent. We prove that for each δ there exist irrational numbers β such that 0 ( e ( β ) r ) = Ω ( ( 1 - r ) - 1 + δ ) .

On the Behavior of Power Series with Completely Additive Coefficients

Oleg Petrushov — 2015

Bulletin of the Polish Academy of Sciences. Mathematics

Consider the power series ( z ) = n = 1 α ( n ) z , where α(n) is a completely additive function satisfying the condition α(p) = o(lnp) for prime numbers p. Denote by e(l/q) the root of unity e 2 π i l / q . We give effective omega-estimates for ( e ( l / p k ) r ) when r → 1-. From them we deduce that if such a series has non-singular points on the unit circle, then it is a zero function.

Page 1

Download Results (CSV)