The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 3 of 3

Showing per page

Order by Relevance | Title | Year of publication

On the behavior close to the unit circle of the power series whose coefficients are squared Möbius function values

Oleg Petrushov — 2015

Acta Arithmetica

We consider the behavior of the power series 0 ( z ) = n = 1 μ 2 ( n ) z n as z tends to e ( β ) = e 2 π i β along a radius of the unit circle. If β is irrational with irrationality exponent 2 then 0 ( e ( β ) r ) = O ( ( 1 - r ) - 1 / 2 - ε ) . Also we consider the cases of higher irrationality exponent. We prove that for each δ there exist irrational numbers β such that 0 ( e ( β ) r ) = Ω ( ( 1 - r ) - 1 + δ ) .

On the Behavior of Power Series with Completely Additive Coefficients

Oleg Petrushov — 2015

Bulletin of the Polish Academy of Sciences. Mathematics

Consider the power series ( z ) = n = 1 α ( n ) z , where α(n) is a completely additive function satisfying the condition α(p) = o(lnp) for prime numbers p. Denote by e(l/q) the root of unity e 2 π i l / q . We give effective omega-estimates for ( e ( l / p k ) r ) when r → 1-. From them we deduce that if such a series has non-singular points on the unit circle, then it is a zero function.

Page 1

Download Results (CSV)