The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
A queueing system of the M/G/n-type, n ≥ 1, with a bounded total volume is considered. It is assumed that the volumes of the arriving packets are generally distributed random variables. Moreover, the AQM-type mechanism is used to control the actual buffer state: each of the arriving packets is dropped with a probability depending on its volume and the occupied volume of the system at the pre-arrival epoch. The explicit formulae for the stationary queue-size distribution and the loss probability...
A multi-server -type queueing system with a bounded total volume and finite queue size is considered. An AQM algorithm with the “accepting” function is being used to control the arrival process of incoming packets. The stationary queue-size distribution and the loss probability are derived. Numerical examples illustrating theoretical results are attached as well.
Download Results (CSV)