The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Korovkin-type approximation theory usually deals with convergence analysis for sequences of positive operators. In this work we present qualitative Korovkin-type convergence results for a class of sequences of non-positive operators, more precisely regular operators with vanishing negative parts under a limiting process. Sequences of that type are called sequences of almost positive linear operators and have not been studied before in the context of Korovkin-type approximation theory. As an example...
Download Results (CSV)