In this paper we propose a solution of the Lambertian shape-from-shading
(SFS) problem by designing
a new mathematical framework based on the
notion of viscosity solution. The power of our approach is twofolds:
(1) it defines a notion of weak solutions
(in the viscosity sense) which does not
necessarily require boundary data. Moreover, it allows to characterize the
viscosity solutions by their “minimums”; and (2) it unifies the works of [Rouy and Tourin,
(1992) 867–884],...
In this note, we elucidate some of the mathematical, statistical and epistemological issues involved in using copulas to model discrete data. We contrast the possible use of (nonparametric) copula methods versus the problematic use of parametric copula models. For the latter, we stress, among other issues, the possibility of obtaining impossible models, arising from model misspecification or unidentifiability of the copula parameter.
Our purpose is both conceptual and practical. On the one hand, we discuss the question which properties are basic ingredients of a general conceptual notion of a multivariate quantile. We propose and argue that the object “quantile” should be defined as a Markov morphism which carries over similar algebraic, ordering and topological properties as known for quantile functions on the real line. On the other hand, we also propose a practical quantile Markov morphism which combines a copula standardization...
Download Results (CSV)