Currently displaying 1 – 10 of 10

Showing per page

Order by Relevance | Title | Year of publication

Boundary eigencurve problems involving the biharmonic operator

Omar ChakroneNajib TsouliMostafa RahmaniOmar Darhouche — 2014

Applicationes Mathematicae

The aim of this paper is to study the spectrum of the fourth order eigenvalue boundary value problem ⎧Δ²u = αu + βΔu in Ω, ⎨ ⎩u = Δu = 0 on ∂Ω. where (α,β) ∈ ℝ². We prove the existence of a first nontrivial curve of this spectrum and we give its variational characterization. Moreover we prove some properties of this curve, e.g., continuity, convexity, and asymptotic behavior. As an application, we study the non-resonance of solutions below...

Three solutions for a nonlinear Neumann boundary value problem

Najib TsouliOmar ChakroneOmar DarhoucheMostafa Rahmani — 2014

Applicationes Mathematicae

The aim of this paper is to establish the existence of at least three solutions for the nonlinear Neumann boundary-value problem involving the p(x)-Laplacian of the form - Δ p ( x ) u + a ( x ) | u | p ( x ) - 2 u = μ g ( x , u ) in Ω, | u | p ( x ) - 2 u / ν = λ f ( x , u ) on ∂Ω. Our technical approach is based on the three critical points theorem due to Ricceri.

Spectre d'ordre supérieur et problèmes aux limites quasi-linéaires

Aomar AnaneOmar ChakroneJean-Pierre Gossez — 2001

Bollettino dell'Unione Matematica Italiana

Nello studio dei problemi del tipo - Δ u = f x , u + h x , si impongono generalmente delle condizione sul comportamento asintotico di f x , u rispetto allo spettro di - Δ . Avendo in vista dei problemi quasilineari del tipo - Δ u = f x , u , u + h x , sembra naturale introdurre una nozione di spettro per - Δ che tenga conto della dipendenza del membro di destra rispetto al gradiende u . L'oggetto di questo lavoro è di definire, studiare e applicare questa nuova nozione di spettro.

Page 1

Download Results (CSV)