On the asymptotic behaviour of two sequences related by a convolution equation.
Let f be a measurable, real function defined in a neighbourhood of infinity. The function f is said to be of generalised regular variation if there exist functions h ≢ 0 and g > 0 such that f(xt) - f(t) = h(x)g(t) + o(g(t)) as t → ∞ for all x ∈ (0,∞). Zooming in on the remainder term o(g(t)) eventually leads to the relation f(xt) - f(t) = h₁(x)g₁(t) + ⋯ + hₙ(x)gₙ(t) + o(gₙ(t)), each being of smaller order than its predecessor . The function f is said to be generalised regularly varying of...
Let denote the failure rate function of the . and let denote the failure rate function of the mean residual life distribution. In this paper we characterize the distribution functions for which and we estimate when it is only known that or is bounded.
Page 1