The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 9 of 9

Showing per page

Order by Relevance | Title | Year of publication

Generalised regular variation of arbitrary order

Edward OmeyJohan Segers — 2010

Banach Center Publications

Let f be a measurable, real function defined in a neighbourhood of infinity. The function f is said to be of generalised regular variation if there exist functions h ≢ 0 and g > 0 such that f(xt) - f(t) = h(x)g(t) + o(g(t)) as t → ∞ for all x ∈ (0,∞). Zooming in on the remainder term o(g(t)) eventually leads to the relation f(xt) - f(t) = h₁(x)g₁(t) + ⋯ + hₙ(x)gₙ(t) + o(gₙ(t)), each g i being of smaller order than its predecessor g i - 1 . The function f is said to be generalised regularly varying of...

Page 1

Download Results (CSV)