The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 8 of 8

Showing per page

Order by Relevance | Title | Year of publication

Semilinear elliptic problems in unbounded domains

Aleksandra Orpel — 2006

Applicationes Mathematicae

We investigate the existence of positive solutions and their continuous dependence on functional parameters for a semilinear Dirichlet problem. We discuss the case when the domain is unbounded and the nonlinearity is smooth and convex on a certain interval only.

Continuous dependence on function parameters for superlinear Dirichlet problems

Aleksandra Orpel — 2005

Colloquium Mathematicae

We discuss the existence of solutions for a certain generalization of the membrane equation and their continuous dependence on function parameters. We apply variational methods and consider the PDE as the Euler-Lagrange equation for a certain integral functional, which is not necessarily convex and coercive. As a consequence of the duality theory we obtain variational principles for our problem and some numerical results concerning approximation of solutions.

On the existence of multiple positive solutions for a certain class of elliptic problems

Aleksandra Orpel — 2004

Banach Center Publications

We investigate the existence of solutions for the Dirichlet problem including the generalized balance of a membrane equation. We present a duality theory and variational principle for this problem. As one of the consequences of the duality we obtain some numerical results which give a measure of a duality gap between the primal and dual functional for approximate solutions.

The Dirichlet problem with sublinear nonlinearities

Aleksandra Orpel — 2002

Annales Polonici Mathematici

We investigate the existence of solutions of the Dirichlet problem for the differential inclusion 0 Δ x ( y ) + x G ( y , x ( y ) ) for a.e. y ∈ Ω, which is a generalized Euler-Lagrange equation for the functional J ( x ) = Ω 1 / 2 | x ( y ) | ² - G ( y , x ( y ) ) d y . We develop a duality theory and formulate the variational principle for this problem. As a consequence of duality, we derive the variational principle for minimizing sequences of J. We consider the case when G is subquadratic at infinity.

Dirichlet problems without convexity assumption

Aleksandra Orpel — 2005

Annales Polonici Mathematici

We deal with the existence of solutions of the Dirichlet problem for sublinear and superlinear partial differential inclusions considered as generalizations of the Euler-Lagrange equation for a certain integral functional without convexity assumption. We develop a duality theory and variational principles for this problem. As a consequence of the duality theory we give a numerical version of the variational principles which enables approximation of the solution for our problem.

On the existence of multiple solutions for a nonlocal BVP with vector-valued response

Andrzej NowakowskiAleksandra Orpel — 2006

Czechoslovak Mathematical Journal

The existence of positive solutions for a nonlocal boundary-value problem with vector-valued response is investigated. We develop duality and variational principles for this problem. Our variational approach enables us to approximate solutions and give a measure of a duality gap between the primal and dual functional for minimizing sequences.

Page 1

Download Results (CSV)