The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 17 of 17

Showing per page

Order by Relevance | Title | Year of publication

On coefficients of vector-valued Bloch functions

Oscar Blasco — 2004

Studia Mathematica

Let X be a complex Banach space and let Bloch(X) denote the space of X-valued analytic functions on the unit disc such that s u p | z | < 1 ( 1 - | z | ² ) | | f ' ( z ) | | < . A sequence (Tₙ)ₙ of bounded operators between two Banach spaces X and Y is said to be an operator-valued multiplier between Bloch(X) and ℓ₁(Y) if the map n = 0 x z ( T ( x ) ) defines a bounded linear operator from Bloch(X) into ℓ₁(Y). It is shown that if X is a Hilbert space then (Tₙ)ₙ is a multiplier from Bloch(X) into ℓ₁(Y) if and only if s u p k n = 2 k 2 k + 1 | | T | | ² < . Several results about Taylor coefficients of vector-valued...

Vector valued measures of bounded mean oscillation.

Oscar Blasco — 1991

Publicacions Matemàtiques

The duality between H1 and BMO, the space of functions of bounded mean oscillation (see [JN]), was first proved by C. Fefferman (see [F], [FS]) and then other proofs of it were obtained. In this paper we shall study such space in little more detail and we shall consider the H1-BMO duality for vector-valued functions in the more general setting of spaces of homogeneous type (see [CW]).

Summing multi-norms defined by Orlicz spaces and symmetric sequence space

Oscar Blasco — 2016

Commentationes Mathematicae

We develop the notion of the ( X 1 , X 2 ) -summing power-norm based on a Banach space E , where X 1 and X 2 are symmetric sequence spaces. We study the particular case when X 1 and X 2 are Orlicz spaces Φ and Ψ respectively and analyze under which conditions the ( Φ , Ψ ) -summing power-norm becomes a multinorm. In the case when E is also a symmetric sequence space L , we compute the precise value of ( δ 1 , , δ n ) n ( X 1 , X 2 ) where ( δ k ) stands for the canonical basis of L , extending known results for the ( p , q ) -summing power-norm based on the space r which...

Equivalences involving (p,q)-multi-norms

Oscar BlascoH. G. DalesHung Le Pham — 2014

Studia Mathematica

We consider (p,q)-multi-norms and standard t-multi-norms based on Banach spaces of the form L r ( Ω ) , and resolve some question about the mutual equivalence of two such multi-norms. We introduce a new multi-norm, called the [p,q]-concave multi-norm, and relate it to the standard t-multi-norm.

Page 1

Download Results (CSV)