A global bifurcation result of a Neumann problem with indefinite weight.
We prove that for any λ ∈ ℝ, there is an increasing sequence of eigenvalues μₙ(λ) for the nonlinear boundary value problem ⎧ in Ω, ⎨ ⎩ on crtial ∂Ω and we show that the first one μ₁(λ) is simple and isolated; we also prove some results about variations of the density ϱ and the continuity with respect to the parameter λ.
Page 1