The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Mathematics Subject Classification: 26A33, 76M35, 82B31
A stochastic solution is constructed for a fractional generalization of
the KPP (Kolmogorov, Petrovskii, Piskunov) equation. The solution uses
a fractional generalization of the branching exponential process and propagation
processes which are spectral integrals of Levy processes.
2000 Mathematics Subject Classification: Primary 46F25, 26A33; Secondary: 46G20
In this paper we study the generalized Riemann-Liouville (resp. Caputo)
time fractional evolution equation in infinite dimensions. We show that the
explicit solution is given as the convolution between the initial condition
and a generalized function related to the Mittag-Leffler function.
The fundamental solution corresponding to the Riemann-Liouville time fractional
evolution equation does not admit a...
We study a quantum extension of the Lévy Laplacian, so-called quantum Lévy-type Laplacian, to the nuclear algebra of operators on spaces of entire functions. We give several examples of the action of the quantum Lévy-type Laplacian on basic operators and we study a quantum white noise convolution differential equation involving the quantum Lévy-type Laplacian.
Download Results (CSV)