Trivial units in commutative group algebras.
Let G be an infinite abelian p-group and let K be a field of the first kind with respect to p of characteristic different from p such that or . The main result of the paper is the computation of the Ulm-Kaplansky functions of the factor group S(KG)/G of the normalized Sylow p-subgroup S(KG) in the group ring KG modulo G. We also characterize the basic subgroups of S(KG)/G by proving that they are isomorphic to S(KB)/B, where B is a basic subgroup of G.
∗ The work was supported by the National Fund “Scientific researches” and by the Ministry of Education and Science in Bulgaria under contract MM 70/91. Let K be a field of characteristic p > 0 and let G be a direct sum of cyclic groups, such that its torsion part is a p-group. If there exists a K-isomorphism KH ∼= KG for some group H, then it is shown that H ∼= G. Let G be a direct sum of cyclic groups, a divisible group or a simply presented torsion abelian group. Then KH ∼= KG as...
2000 Mathematics Subject Classification: Primary 20C07, 20K10, 20K20, 20K21; Secondary 16U60, 16S34. Let PG be the abelian modular group ring of the abelian group G over the abelian ring P with 1 and prime char P = p. In the present article,the p-primary components Up(PG) and S(PG) of the groups of units U(PG) and V(PG) are classified for some major classes of abelian groups. Suppose K is a first kind field with respect to p in char K ≠ p and A is an abelian p-group. In the present work,...
Page 1