The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 7 of 7

Showing per page

Order by Relevance | Title | Year of publication

On the lower order ( R ) of an entire Dirichlet series

P. K. JainD. R. Jain — 1974

Annales de l'institut Fourier

The estimations of lower order ( R ) λ in terms of the sequences { a n } and { λ n } for an entire Dirichlet series f ( s ) = n = 1 a n e s λ n , have been obtained, namely : λ = max { λ n p } lim inf p λ n p log λ n p - 1 log | a n p | - 1 = max { λ n p } lim inf p ( λ n p - λ n p - 1 ) log λ n p - 1 log | a n p - 1 | a n p | . One of these estimations improves considerably the estimations earlier obtained by Rahman (Quart. J. Math. Oxford, (2), 7, 96-99 (1956)) and Juneja and Singh (Math. Ann., 184(1969), 25-29 ).

Page 1

Download Results (CSV)