Some Steinhaus type theorems over valued fields
In this paper, denotes a complete, non-trivially valued, non-archimedean field. Sequences and infinite matrices have entries in The main purpose of this paper is to prove some product theorems involving the methods and in such fields
In this note, denotes a complete, non-trivially valued, non-archimedean field. We correct a Tauberian theorem for weighted means in proved earlier in [1].
In this short note, we add a few remarks in the context of [1].
In this paper,we prove a theorem which gives an equivalent formulation of summability by weighted mean methods. The result of Hardy [1] and that of Móricz and Rhoades [2] are special cases of this theorem. In this context, it is important to note that the result of Móricz and Rhoades is valid even without the assumption as .
Throughout this paper, K denotes a ds-complete, non-trivially valued, ultrametric field. Entries of double sequences, double series and 4-dimensional matrices are in K. We prove the Schur and Steinhaus theorems for 4-dimensional matrices in such fields.
This paper is a sequel to [2]. Throughout this paper, entries of double sequences, double series and 4-dimensional infinite matrices are real or complex numbers. We prove the Schur and Steinhaus theorems for 4-dimensional infinite matrices.
Page 1