Currently displaying 1 – 5 of 5

Showing per page

Order by Relevance | Title | Year of publication

Invertibility in tensor products of Q-algebras

Seán DineenPablo Sevilla-Peris — 2002

Studia Mathematica

We consider, using various tensor norms, the completed tensor product of two unital lmc algebras one of which is commutative. Our main result shows that when the tensor product of two Q-algebras is an lmc algebra, then it is a Q-algebra if and only if pointwise invertibility implies invertibility (as in the Gelfand theory). This is always the case for Fréchet algebras.

Unconditionality for m-homogeneous polynomials on

Andreas DefantPablo Sevilla-Peris — 2016

Studia Mathematica

Let χ(m,n) be the unconditional basis constant of the monomial basis z α , α ∈ ℕ₀ⁿ with |α| = m, of the Banach space of all m-homogeneous polynomials in n complex variables, endowed with the supremum norm on the n-dimensional unit polydisc ⁿ. We prove that the quotient of s u p m s u p m χ ( m , n ) m and √(n/log n) tends to 1 as n → ∞. This reflects a quite precise dependence of χ(m,n) on the degree m of the polynomials and their number n of variables. Moreover, we give an analogous formula for m-linear forms, a reformulation...

The Dirichlet-Bohr radius

Denote by Ω(n) the number of prime divisors of n ∈ ℕ (counted with multiplicities). For x∈ ℕ define the Dirichlet-Bohr radius L(x) to be the best r > 0 such that for every finite Dirichlet polynomial n x a n n - s we have n x | a n | r Ω ( n ) s u p t | n x a n n - i t | . We prove that the asymptotically correct order of L(x) is ( l o g x ) 1 / 4 x - 1 / 8 . Following Bohr’s vision our proof links the estimation of L(x) with classical Bohr radii for holomorphic functions in several variables. Moreover, we suggest a general setting which allows translating various results on Bohr...

Page 1

Download Results (CSV)