The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Various ordinal ranks for Baire-1 real-valued functions, which have been used in the literature, are adapted to provide ranks for Baire-1 multifunctions. A new rank is also introduced which, roughly speaking, gives an estimate of how far a Baire-1 multifunction is from being upper semicontinuous.
We give a different proof of the well-known fact that any uncountable family of analytic subsets of a Polish space with the point-finite intersection property must contain a subfamily whose union is not analytic. Our approach is based on the Kunen-Martin theorem.
We characterize those classes 𝓒 of separable Banach spaces for which there exists a separable Banach space Y not containing ℓ₁ and such that every space in the class 𝓒 is a quotient of Y.
It is proved that the class of separable Rosenthal compacta on the Cantor set having a uniformly bounded dense sequence of continuous functions is strongly bounded.
Let X be an abelian Polish group. For every analytic Haar-null set A ⊆ X let T(A) be the set of test measures of A. We show that T(A) is always dense and co-analytic in P(X). We prove that if A is compact then T(A) is dense, while if A is non-meager then T(A) is meager. We also strengthen a result of Solecki and we show that for every analytic Haar-null set A, there exists a Borel Haar-null set B ⊇ A such that T(A)∖ T(B) is meager. Finally, under Martin’s Axiom and the negation of Continuum Hypothesis,...
We show that the classes of separable reflexive Banach spaces and of spaces with separable dual are strongly bounded. This gives a new proof of a recent result of E. Odell and Th. Schlumprecht, asserting that there exists a separable reflexive Banach space containing isomorphic copies of every separable uniformly convex Banach space.
We prove a structural property of the class of unconditionally saturated separable Banach spaces. We show, in particular, that for every analytic set 𝓐, in the Effros-Borel space of subspaces of C[0,1], of unconditionally saturated separable Banach spaces, there exists an unconditionally saturated Banach space Y, with a Schauder basis, that contains isomorphic copies of every space X in the class 𝓐.
We prove a density version of the Carlson–Simpson Theorem. Specifically we show the following. For every integer and every set of words over satisfying there exist a word over and a sequence of left variable words over such that the set is contained in . While the result is infinite-dimensional its proof is based on an appropriate finite and quantitative version, also obtained in the paper.
Download Results (CSV)