On Quasilinear Parabolic Systems.
Si studiano esistenza, unicità e regolarità delle soluzioni strette, classiche e forti dell'equazione di evoluzione non autonoma con il dato iniziale , in uno spazio di Banach . Gli operatori sono generatori infinitesimali di semi-gruppi analitici ed hanno dominio indipendente da e non necessariamente denso in . Si danno condizioni necessarie e sufficienti per l'esistenza e la regolarità hölderiana della soluzione e della sua derivata.
Si studiano esistenza, unicità e regolarità delle soluzioni strette, classiche e forti dell’equazione di evoluzione non autonoma , con il dato iniziale , in spazi di Banach. I dominii degli operatori variano in e non sono necessariamente densi in . Si danno condizioni necessarie e sufficienti per l'esistenza e la regolarità holderiana della soluzione e della sua derivata.
Si studiano esistenza, unicità e regolarità delle soluzioni strette, classiche e forti dell'equazione di evoluzione non autonoma con il dato iniziale , in uno spazio di Banach . Gli operatori sono generatori infinitesimali di semi-gruppi analitici ed hanno dominio indipendente da e non necessariamente denso in . Si danno condizioni necessarie e sufficienti per l'esistenza e la regolarità hölderiana della soluzione e della sua derivata.
Si studiano esistenza, unicità e regolarità delle soluzioni strette, classiche e forti dell’equazione di evoluzione non autonoma , con il dato iniziale , in spazi di Banach. I dominii degli operatori variano in e non sono necessariamente densi in . Si danno condizioni necessarie e sufficienti per l'esistenza e la regolarità holderiana della soluzione e della sua derivata.
Page 1