The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Si studiano esistenza, unicità e regolarità delle soluzioni strette, classiche e forti dell'equazione di evoluzione non autonoma con il dato iniziale , in uno spazio di Banach . Gli operatori sono generatori infinitesimali di semi-gruppi analitici ed hanno dominio indipendente da e non necessariamente denso in . Si danno condizioni necessarie e sufficienti per l'esistenza e la regolarità hölderiana della soluzione e della sua derivata.
Si studiano esistenza, unicità e regolarità delle soluzioni strette, classiche e forti dell’equazione di evoluzione non autonoma , con il dato iniziale , in spazi di Banach. I dominii degli operatori variano in e non sono necessariamente densi in . Si danno condizioni necessarie e sufficienti per l'esistenza e la regolarità holderiana della soluzione e della sua derivata.
Si studiano esistenza, unicità e regolarità delle soluzioni strette, classiche e forti dell'equazione di evoluzione non autonoma con il dato iniziale , in uno spazio di Banach . Gli operatori sono generatori infinitesimali di semi-gruppi analitici ed hanno dominio indipendente da e non necessariamente denso in . Si danno condizioni necessarie e sufficienti per l'esistenza e la regolarità hölderiana della soluzione e della sua derivata.
Si studiano esistenza, unicità e regolarità delle soluzioni strette, classiche e forti dell’equazione di evoluzione non autonoma , con il dato iniziale , in spazi di Banach. I dominii degli operatori variano in e non sono necessariamente densi in . Si danno condizioni necessarie e sufficienti per l'esistenza e la regolarità holderiana della soluzione e della sua derivata.
Download Results (CSV)