The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 6 of 6

Showing per page

Order by Relevance | Title | Year of publication

Every separable Banach space has a basis with uniformly controlled permutations

Paolo Terenzi — 2006

There exists a universal control sequence p ̅ ( m ) m = 1 of increasing positive integers such that: Every infinite-dimensional separable Banach space X has a biorthogonal system xₙ,xₙ* with ||xₙ|| = 1 and ||xₙ*|| < K for each n such that, for each x ∈ X, x = n = 1 x π ( n ) * ( x ) x π ( n ) where π(n) is a permutation of n which depends on x but is uniformly controlled by p ̅ ( m ) m = 1 , that is, n n = 1 m π ( n ) n = 1 p ̅ ( m ) n n = 1 p ̅ ( m + 1 ) for each m.

Every separable Banach space has a bounded strong norming biorthogonal sequence which is also a Steinitz basis

Paolo Terenzi — 1994

Studia Mathematica

Every separable, infinite-dimensional Banach space X has a biorthogonal sequence z n , z * n , with s p a n z * n norming on X and z n + z * n bounded, so that, for every x in X and x* in X*, there exists a permutation π(n) of n so that x c o n v ¯ f i n i t e s u b s e r i e s o f n = 1 z * n ( x ) z n a n d x * n ( x ) = n = 1 z * π ( n ) ( x ) x * ( z π ( n ) ) .

On bounded and total biorthogonal systems spanning given subspaces

Paolo Terenzi — 1979

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti

Siano Y e Z due sottospazi quasi complementari di uno spazio di Banach separabile B . È noto (Vinokurov) che B ha una M -base unione di una M -base di Y e di una M -base di Z ; inoltre è noto (Milman) che, se { y n } è una M -base di Y , esiste una successione { z n } di Z tale che { y n } { z n } sia una M -base di B . Recentemente Ovsepian-Pelczynski, dando una risposta affermativa ad un problema da lungo tempo irrisolto, hanno dimostrato che B ha sempre una M -base uniformemente minimale. Tale risultato pone allora la questione...

On bibasic systems and a Retherford’s problem

Anatoli PličkoPaolo Terenzi — 1984

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

Ogni spazio di Banach ha un sistema bibasico ( x n , f n ) normalizzato; inoltre ogni successione ( x n ) uniformemente minimale appartiene ad un sistema biortogonale limitato ( x n , f n ) , dove ( f n ) è M-basica e normante.

On bibasic systems and a Retherford’s problem

Anatoli PličkoPaolo Terenzi — 1984

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti

Ogni spazio di Banach ha un sistema bibasico ( x n , f n ) normalizzato; inoltre ogni successione ( x n ) uniformemente minimale appartiene ad un sistema biortogonale limitato ( x n , f n ) , dove ( f n ) è M-basica e normante.

Page 1

Download Results (CSV)