An observation on the extension of Abel's lemma.
We offer some relations and congruences for two interesting spt-type functions, which together form a relation to Andrews' spt function.
We obtain new q-series identities that have interesting interpretations in terms of divisors and partitions. We present a proof of a theorem of Z. B. Wang, R. Fokkink, and W. Fokkink, which follows as a corollary to our main q-series identity, and offer a similar result.
We provide a new approach to establishing certain q-series identities that were proved by Andrews, and show how to prove further identities using conjugate Bailey pairs. Some relations between some q-series and ternary quadratic forms are established.
We show that some partitions related to two of Ramanujan's mock theta functions are related to indefinite quadratic forms and real quadratic fields. In particular, we examine a third order mock theta function and a fifth order mock theta function.
We examine the -Pell sequences and their applications to weighted partition theorems and values of -functions. We also put them into perspective with sums of tails. It is shown that there is a deeper structure between two-variable generalizations of Rogers-Ramanujan identities and sums of tails, by offering examples of an operator equation considered in a paper published by the present author. The paper starts with the classical example offered by Ramanujan and studied by previous authors noted...
We consider an asymptotic analysis for series related to the work of Hardy and Littlewood (1923) on Diophantine approximation, as well as Davenport. In particular, we expand on ideas from some previous work on arithmetic series and the RH. To accomplish this, Mellin inversion is applied to certain infinite series over arithmetic functions to apply Cauchy's residue theorem, and then the remainder of terms is estimated according to the assumption of the RH. In the last section, we use simple properties...
We consider some applications of the singular integral equation of the second kind of Fox. Some new solutions to Fox’s integral equation are discussed in relation to number theory.
Page 1