The goal of this paper is to unify two lines in a particular area of graph limits. First, we generalize and provide unified treatment of various graph limit concepts by means of a combination of model theory and analysis. Then, as an example, we generalize limits of bounded degree graphs from subgraph testing to finite model testing.
Based on methods of structural convergence we provide a unifying view of local-global convergence, fitting to model theory and analysis. The general approach outlined here provides a possibility to extend the theory of local-global convergence to graphs with unbounded degrees. As an application, we extend previous results on continuous clustering of local convergent sequences and prove the existence of modeling quasi-limits for local-global convergent sequences of nowhere dense graphs.
Download Results (CSV)