We formulate a boundary value problem for the Navier-Stokes equations with prescribed u·n, curl u·n and alternatively (∂u/∂n)·n or curl²u·n on the boundary. We deal with the question of existence of a steady weak solution.
We formulate sufficient conditions for regularity up to the boundary of a weak solution v in a subdomain Ω × (t₁,t₂) of the time-space cylinder Ω × (0,T) by means of requirements on one of the eigenvalues of the rate of deformation tensor. We assume that Ω is a cube.
We consider a generic scalar model for the Oseen equations in an exterior three-dimensional domain. We assume the case of a non-constant coefficient function. Using a variational approach we prove new regularity properties of a weak solution whose existence and uniqueness in anisotropically weighted Sobolev spaces were proved in [10]. Because we use some facts and technical tools proved in the above mentioned paper, we give also a brief review of its results and methods.
We study the nonstationary Navier-Stokes equations in the entire three-dimensional space and give some criteria on certain components of gradient of the velocity which ensure its global-in-time smoothness.
This article addresses some theoretical questions related to the choice of boundary conditions, which are essential for modelling and numerical computing in mathematical fluids mechanics. Unlike the standard choice of the well known non slip boundary conditions, we emphasize three selected sets of slip conditions, and particularly stress on the interaction between the appropriate functional setting and the status of these conditions.
We consider the time-periodic Oseen flow around a rotating body in ℝ³. We prove a priori estimates in -spaces of weak solutions for the whole space problem under the assumption that the right-hand side has the divergence form. After a time-dependent change of coordinates the problem is reduced to a stationary Oseen equation with the additional term -(ω ∧ x)·∇u + ω ∧ u in the equation of momentum where ω denotes the angular velocity. We prove the existence of generalized weak solutions in -space...
Download Results (CSV)