The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 11 of 11

Showing per page

Order by Relevance | Title | Year of publication

On the set-theoretic strength of the n-compactness of generalized Cantor cubes

Paul HowardEleftherios Tachtsis — 2016

Fundamenta Mathematicae

We investigate, in set theory without the Axiom of Choice , the set-theoretic strength of the statement Q(n): For every infinite set X, the Tychonoff product 2 X , where 2 = 0,1 has the discrete topology, is n-compact, where n = 2,3,4,5 (definitions are given in Section 1). We establish the following results: (1) For n = 3,4,5, Q(n) is, in (Zermelo-Fraenkel set theory minus ), equivalent to the Boolean Prime Ideal Theorem , whereas (2) Q(2) is strictly weaker than in set theory (Zermelo-Fraenkel set...

On rigid relation principles in set theory without the axiom of choice

Paul HowardEleftherios Tachtsis — 2016

Fundamenta Mathematicae

We study the deductive strength of the following statements: 𝖱𝖱: every set has a rigid binary relation, 𝖧𝖱𝖱: every set has a hereditarily rigid binary relation, 𝖲𝖱𝖱: every set has a strongly rigid binary relation, in set theory without the Axiom of Choice. 𝖱𝖱 was recently formulated by J. D. Hamkins and J. Palumbo, and 𝖲𝖱𝖱 is a classical (non-trivial) 𝖹𝖥𝖢-result by P. Vopěnka, A. Pultr and Z. Hedrlín.

On a Certain Notion of Finite and a Finiteness Class in Set Theory without Choice

Horst HerrlichPaul HowardEleftherios Tachtsis — 2015

Bulletin of the Polish Academy of Sciences. Mathematics

We study the deductive strength of properties under basic set-theoretical operations of the subclass E-Fin of the Dedekind finite sets in set theory without the Axiom of Choice ( AC ), which consists of all E-finite sets, where a set X is called E-finite if for no proper subset Y of X is there a surjection f:Y → X.

On special partitions of Dedekind- and Russell-sets

Horst HerrlichPaul HowardEleftherios Tachtsis — 2012

Commentationes Mathematicae Universitatis Carolinae

A Russell set is a set which can be written as the union of a countable pairwise disjoint set of pairs no infinite subset of which has a choice function and a Russell cardinal is the cardinal number of a Russell set. We show that if a Russell cardinal a has a ternary partition (see Section 1, Definition 2) then the Russell cardinal a + 2 fails to have such a partition. In fact, we prove that if a ZF-model contains a Russell set, then it contains Russell sets with ternary partitions as well as Russell...

On preimages of ultrafilters in ZF

Horst HerrlichPaul HowardKyriakos Keremedis — 2016

Commentationes Mathematicae Universitatis Carolinae

We show that given infinite sets X , Y and a function f : X Y which is onto and n -to-one for some n , the preimage of any ultrafilter of Y under f extends to an ultrafilter. We prove that the latter result is, in some sense, the best possible by constructing a permutation model with a set of atoms A and a finite-to-one onto function f : A ω such that for each free ultrafilter of ω its preimage under f does not extend to an ultrafilter. In addition, we show that in there exists an ultrafilter compact pseudometric...

Page 1

Download Results (CSV)