Automorphisms of
We study conditions on automorphisms of Boolean algebras of the form (where λ is an uncountable cardinal and is the ideal of sets of cardinality less than κ ) which allow one to conclude that a given automorphism is trivial. We show (among other things) that every automorphism of which is trivial on all sets of cardinality κ⁺ is trivial, and that implies both that every automorphism of (ℝ)/Fin is trivial on a cocountable set and that every automorphism of (ℝ)/Ctble is trivial.