Binary operations on commutative Jordan algebras are used to carry out the ANOVA of a two layer model. The treatments in the first layer nests those in the second layer, that being a sub-model for each treatment in the first layer. We present an application with data retried from agricultural experiments.
Commutative Jordan algebras are used to drive an highly tractable framework for balanced factorial designs with a prime number p of levels for their factors. Both fixed effects and random effects models are treated. Sufficient complete statistics are obtained and used to derive UMVUE for the relevant parameters. Confidence regions are obtained and it is shown how to use duality for hypothesis testing.
Download Results (CSV)