The multivariate linear model, in which the matrix of the first order parameters is divided into two matrices: to the matrix of the useful parameters and to the matrix of the nuisance parameters, is considered.
The multivariate linear model, in which the matrix of the first order parameters is divided into two matrices: to the matrix of the useful parameters and to the matrix of the nuisance parameters, is considered. We examine eliminating transformations which eliminate the nuisance parameters without loss of information on the useful parameters and on the variance components.
The linear regression model in which the vector of the first order parameter is divided into two parts: to the vector of the useful parameters and to the vector of the nuisance parameters is considered. The type I constraints are given on the useful parameters. We examine eliminating transformations which eliminate the nuisance parameters without loss of information on the useful parameters.
The properties of the regular linear model are well known (see [1], Chapter 1). In this paper the situation where the vector of the first order parameters is divided into two parts (to the vector of the useful parameters and to the vector of the nuisance parameters) is considered. It will be shown how the BLUEs of these parameters will be changed by constraints given on them. The theory will be illustrated by an example from the practice.
Download Results (CSV)