The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
A method for solving large convex optimization problems is presented. Such problems usually contain a big linear part and only a small or medium nonlinear part. The parts are tackled using two specialized (and thus efficient) external solvers: purely nonlinear and large-scale linear with a quadratic goal function. The decomposition uses an alteration of projection methods. The construction of the method is based on the zigzagging phenomenon and yields a non-asymptotic convergence, not dependent...
Download Results (CSV)