The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
We describe the equivariant cobordism classification of smooth actions of the group on closed smooth m-dimensional manifolds for which the fixed point set of the action is the union F = p ∪ Vⁿ, where p is a point and Vⁿ is a connected manifold of dimension n with n > 0. The description is given in terms of the set of equivariant cobordism classes of involutions fixing p ∪ Vⁿ. This generalizes a lot of previously obtained particular cases of the above question; additionally, the result yields...
Let Fⁿ be a connected, smooth and closed n-dimensional manifold. We call Fⁿ a manifold with property when it has the following property: if is any smooth closed m-dimensional manifold with m > n and is a smooth involution whose fixed point set is Fⁿ, then m = 2n. Examples of manifolds with this property are: the real, complex and quaternionic even-dimensional projective spaces , and , and the connected sum of and any number of copies of Sⁿ × Sⁿ, where Sⁿ is the n-sphere and n is not...
Let Fⁿ be a connected, smooth and closed n-dimensional manifold satisfying the following property: if is any smooth and closed m-dimensional manifold with m > n and is a smooth involution whose fixed point set is Fⁿ, then m = 2n. We describe the equivariant cobordism classification of smooth actions of the group on closed smooth m-dimensional manifolds for which the fixed point set of the action is a submanifold Fⁿ with the above property. This generalizes a result of F. L. Capobianco,...
Let E be an oriented, smooth and closed m-dimensional manifold with m ≥ 2 and V ⊂ E an oriented, connected, smooth and closed (m-2)-dimensional submanifold which is homologous to zero in E. Let be the standard inclusion, where Sⁿ is the n-sphere and n ≥ 3. We prove the following extension result: if is a smooth map, then h extends to a smooth map g: E → Sⁿ transverse to and with . Using this result, we give a new and simpler proof of a theorem of Carlos Biasi related to the ambiental bordism...
Download Results (CSV)