In this paper, it is proved that the Banach algebra , generated by a Lie algebra ℒ of operators, consists of quasinilpotent operators if ℒ consists of quasinilpotent operators and consists of polynomially compact operators. It is also proved that consists of quasinilpotent operators if ℒ is an essentially nilpotent Engel Lie algebra generated by quasinilpotent operators. Finally, Banach algebras generated by essentially nilpotent Lie algebras are shown to be compactly quasinilpotent.
A scattered element of a Banach algebra is an element with at most countable spectrum. The set of all scattered elements is denoted by (). The scattered radical is the largest ideal consisting of scattered elements. We characterize in several ways central elements of modulo the scattered radical. As a consequence, it is shown that the following conditions are equivalent: (i) () + () ⊂ (); (ii) ()() ⊂ (); (iii) .
It is proved that if is a Jordan operator on a Hilbert space with the Jordan decomposition , where is normal and is compact and quasinilpotent, i = 1,2, and the Lie algebra generated by J₁,J₂ is an Engel Lie algebra, then the Banach algebra generated by J₁,J₂ is an Engel algebra. Some results for normal operators and Jordan operators on Banach spaces are given.
Download Results (CSV)