The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 4 of 4

Showing per page

Order by Relevance | Title | Year of publication

Domination in the families of Frank and Hamacher t-norms

Peter Sarkoci — 2005

Kybernetika

Domination is a relation between general operations defined on a poset. The old open problem is whether domination is transitive on the set of all t-norms. In this paper we contribute partially by inspection of domination in the family of Frank and Hamacher t-norms. We show that between two different t-norms from the same family, the domination occurs iff at least one of the t-norms involved is a maximal or minimal member of the family. The immediate consequence of this observation is the transitivity...

Remarks on Two Product-like Constructions for Copulas

We investigate two constructions that, starting with two bivariate copulas, give rise to a new bivariate and trivariate copula, respectively. In particular, these constructions are generalizations of the * -product and the -product for copulas introduced by Darsow, Nguyen and Olsen in 1992. Some properties of these constructions are studied, especially their relationships with ordinal sums and shuffles of Min.

Page 1

Download Results (CSV)