The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The necessary and sufficient condition for a function to be Borel measurable (given by Theorem stated below) provides a technique to prove (in Corollary 2) the existence of a Borel measurable map such that holds for each , where denotes Bernoulli sequence of random variables with .
Download Results (CSV)