Currently displaying 1 – 4 of 4

Showing per page

Order by Relevance | Title | Year of publication

Reduced-order Unscented Kalman Filtering with application to parameter identification in large-dimensional systems

Philippe MoireauDominique Chapelle — 2011

ESAIM: Control, Optimisation and Calculus of Variations

We propose a general reduced-order filtering strategy adapted to Unscented Kalman Filtering for any choice of sampling points distribution. This provides tractable filtering algorithms which can be used with large-dimensional systems when the uncertainty space is of reduced size, and these algorithms only invoke the original dynamical and observation operators, namely, they do not require tangent operator computations, which of course is of considerable benefit when nonlinear operators are considered....

Reduced-order Unscented Kalman Filtering with application to parameter identification in large-dimensional systems

Philippe MoireauDominique Chapelle — 2011

ESAIM: Control, Optimisation and Calculus of Variations

We propose a general reduced-order filtering strategy adapted to Unscented Kalman Filtering for any choice of sampling points distribution. This provides tractable filtering algorithms which can be used with large-dimensional systems when the uncertainty space is of reduced size, and these algorithms only invoke the original dynamical and observation operators, namely, they do not require tangent operator computations, which of course is of considerable benefit when nonlinear operators are considered....

Page 1

Download Results (CSV)