The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 3 of 3

Showing per page

Order by Relevance | Title | Year of publication

On ergodic problem for Hamilton-Jacobi-Isaacs equations

Piernicola Bettiol — 2005

ESAIM: Control, Optimisation and Calculus of Variations

We study the asymptotic behavior of λ v λ as λ 0 + , where v λ is the viscosity solution of the following Hamilton-Jacobi-Isaacs equation (infinite horizon case) λ v λ + H ( x , D v λ ) = 0 , with H ( x , p ) : = min b B max a A { - f ( x , a , b ) · p - l ( x , a , b ) } . We discuss the cases in which the state of the system is required to stay in an n -dimensional torus, called periodic boundary conditions, or in the closure of a bounded connected domain Ω n with sufficiently smooth boundary. As far as the latter is concerned, we treat both the case of the Neumann...

On ergodic problem for Hamilton-Jacobi-Isaacs equations

Piernicola Bettiol — 2010

ESAIM: Control, Optimisation and Calculus of Variations

We study the asymptotic behavior of λ v λ as λ 0 + , where v λ is the viscosity solution of the following Hamilton-Jacobi-Isaacs equation (infinite horizon case) λ v λ + H ( x , D v λ ) = 0 , with H ( x , p ) : = min b B max a A { - f ( x , a , b ) · p - l ( x , a , b ) } . We discuss the cases in which the state of the system is required to stay in an -dimensional torus, called periodic boundary conditions, or in the closure of a bounded connected domain Ω n with sufficiently smooth boundary. As far as the latter is concerned, we treat both the case of the Neumann boundary conditions (reflection on the...

Page 1

Download Results (CSV)